

Jennifer Ivester Berry Of Counsel

Direct 405.552.2428 jiberry@phillipsmurrah.com

VIA EMAIL (pudsubmissions@occemail.com) and HAND DELIVERY

Public Utility Division Oklahoma Corporation Commission Jim Thorpe Building 2101 N. Lincoln Oklahoma City, Oklahoma 73105

July 14, 2016

Re: Great Western Wind Energy Project – Woodward and Ellis Counties, Oklahoma

In connection with the referenced project, and on behalf of our client, Great Western Wind Energy, LLC, a Delaware limited liability company, please find enclosed the following documents:

Woodward County

- 1. Affidavit of Publication of the Notice of Intent to Construct, published June 7, 2016 in the Woodward News, a daily newspaper of general circulation printed and published in Woodward, Woodward County, Oklahoma;
- 2. Proof of Publication Order Number 16-06-27, regarding publication of the Notice of Intent to Construct, published June 16, 2016 in the Woodward News, a daily newspaper of general circulation printed and published in Woodward, Woodward County, Oklahoma;
- 3. Affidavit of Publication of Notice of Public Meeting, published June 7, 2016 in the Woodward News, a daily newspaper of general circulation printed and published in Woodward, Woodward County, Oklahoma; and
- 4. Copy of the Advertisement of Notice of Public Meeting, published June 16, 2016 in the Woodward News, a daily newspaper of general circulation printed and published in Woodward, Woodward County, Oklahoma.

Public Utility Division, Oklahoma Corporation Commission July 14, 2016 Page 2 of 2

Ellis County

- 1. Affidavit of Publication of Notice of Intent to Construct, published June 9, 2016 in the Ellis County Capital, a weekly newspaper printed in the Town of Arnett, Ellis County, Oklahoma, a newspaper qualified to publish legal notices, advertisements and publications as provided in 25 O.S. § 106;
- 2. Proof of Publication Order Number 16-06-27, regarding publication of the Notice of Intent to Construct, published June 16, 2016 in the Ellis County Capital, a weekly newspaper printed in the Town of Arnett, Ellis County, Oklahoma, a newspaper qualified to publish legal notices, advertisements and publications as provided in 25 O.S. § 106;
- 3. Affidavit of Publication of the Notice of Public Meeting, published June 9, 2016 in the Ellis County Capital, a weekly newspaper printed in the Town of Arnett, Ellis County, Oklahoma, a newspaper qualified to publish legal notices, advertisements and publications as provided in 25 O.S. § 106; and
- 4. Copy of the Advertisement of Notice of Public Meeting, published June 16, 2016 in the Town of Arnett, Ellis County, Oklahoma, a newspaper qualified to publish legal notices, advertisements and publications as provided in 25 O.S. § 106.

The enclosed documents are being provided to you pursuant to 17 O.S. § 160.21. If you have any questions about this letter, the enclosures or the referenced project, please let me know.

Regards,

Jennifer Ivester Berry

For the Firm

Enclosures

cc: Lainie Alexson, Esq.

Greg Probst, Project Development Manager

AFFP

(Published in the Woodward New

Affidavit of Publication

STATE OF OKLAHOMA } COUNTY OF WOODWARD }

Amanda Frazier, being duly sworn, says:

That he is an employee of the Woodward News, a daily newspaper of general circulation, printed and published in Woodward, Woodward County, Oklahoma; that the publication, a copy of which is attached hereto, was published in the said newspaper on the following dates:

June 07, 2016

That said newspaper was regularly issued and circulated on those dates. SIGNED:

an employee

Subscribed to and sworn to me this 7th day of June 2016.

Sheila Gay, Publisher, Woodward County, Oklahoma

My commission expires: September 24, 2016

(Published in the Woodward News, June 7, 2016)

NOTICE BY PUBLICATION

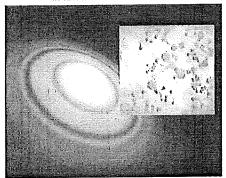
PUBLIC MEETING

Great Western Wind Energy, LLC, a Delaware limited liability company, intends to construct the Great Western wind energy project in Woodward and Ellis Counties, Oklahoma (the "Project"). Pursuant to title 17 O.S. §160.21(C), GWWE will hold a public meeting to discuss the Project and answer any questions. The location, date and time of the public meeting shall be as set forth below:

LOCATION: THE PIONEER ROOM PIONEER HALL 1220 9th ST. WOODWARD, OKLAHOMA 73801

DATE: JUNE 23, 2016

TIME: 6:00PM-8:00PM


DATED this 3rd day of June, 2016.

EDF Renewable Energy c/o Gregory L. Probst 1600 Stout Street Suite 1510 Denver, CO 80202 (801) 631-2666

OFFICIAL SEAL
SHEILA GAY
NOTARY PUBLIC OKLAHOMA
WOODWARD COUNTY
COMM. NO. 12009053 EXP. 124/16

03104407 00041874

Phillips Murrah P.C 101 N. Robinson Oklahoma City, OK 73102

This artist's Impression shows the closest known protoplunetary disc, around the star TM Hydrae in the huge constellation of Hydra (The Female Watersnake). The organic molecule methyl alcohol (methanol) has been found by the Atacama Largo Millimeter/Submillimeter Array (ALMA) in this disc. This is the first such detection of the compound in a young planet-forming disc. Credit: ESO/M

ALMA array again showing its worth with major milestone

BY ROBIN HOHWEILER

The Atacama Large Millimeter/sub-millimeter Army (ALMA) is a power-ful observatory located in the Atacama desert of Chile at an altitude of 16.570 feet above sea level. At than altitude it is above much of the Earth's atmosphere, which blues and distorts line. which blurs and distorts light.

which blurs and distorts light.

The ALMA urray is composed of sidy-six radio untennas, most 40 feet in diameter. The observatory is said to be securate enough to discern a golf ball 9 miles away. The ALMA observatory became operational in 2013 and cost \$1.3 billion to construct, the cost of which was split by the sponsoring regions: North America, Europe and East Axia, The U.S. contributed ubout \$500 million.

ALMA has once ugain shown its worth by achieving a new milestone in its service to astronomers. The organic molecule methyl alcohol (better known ast methanol) has been found by ALMA on the strength of the solution of the s

motecule methyl ulcohol (better known as methanol) has been found by ALMA in the TW Hydrae protoplanetary disc. This is the first such detection of the compound in a young planet-forming disc.

se. Methanol, a derivative of methane, is Melnandi, a derivative of metinare, is one of the largest complex organic molecules detected in discs to dute, identifying its presence in pre-planetary objects is remarkable in understanding how organic molecules are incorporated into nuceral planets.

Methanol is itself a building block for more complex species of fundamental.

for more complex species of fundamental prebiotic importance, like amino

tal prebiotic importance, like amino acid compounds. As a result, methanol plays a vited role in the creation of the rich organic chemistry needed for life. The protoplanetury disc around the young star TW Hydrac, at a distance of noty 170 light-years is an ideal turget for astronomers to study. This system closely resembles what astronomers think our Solar System looked like dur-

BRIEF

study, explains, 'Finding methanol in a protophinetary dise shows the unique capability of ALMA to prove the con-

so, for the first time, allows us to book back in time to the origin of chemical complexity in a planet nursery around a young Sun-like star."

Gaseous methanol in a protoplanetary disc has a unique importance in astrochemistry. While other species detected in space are formed by gasphase chemistry alone, or by a combination of both gas and solid-phase generation, methanol is formed solely in the ice phase via surface reactions on dust grains.

The observation of methanol in the gas phase, combined with information about its distribution, implies that methanol formed on the disc's ley grains, and was subsequently released in gaseous form. This first observation helps to clarify the puzzle of the methanol ice-gas transition, and more generally the chemical processes in astrophysical environments.

Ryan Loomis, co-suther of the study, adds, 'Methanol in gaseous form In the dice is un unmitiguous indicator of rich organic chemical processes at an early stuge of star and planet formation. This result has an impact on our undersunding of how organic matter accumulates in very young planetary systems."

This successful first detection of

Systems."
This successful first detection of This successful first detection of cold gas-planes methanol in a protu-planetary disc means that the produc-tion of ice chemistry can now be explored in discs, paving the way to future studies of complex organic chemistry in planetary birthplaces. In the hunt for life-sustaining exoplanets. astronomers now have access to a pow-erful new tool in ALMA.

ing its formation more than four billion

cars ago. Catherine Walsh, lead author of the plex organic ice reservoir in discs and so, for the first time, allows us to look back in time to the origin of chemical

DALLAS (AP) -The 2016 State Fair of

TAYLOR SVIFT EXHIBIT PART OF 2016 STATE FAIR OF TEXAS Texas will carry the theme "Celebrating

Pair officials on Wednesday announced details of the annual expo planned Sept. 30 through Oct. 23 in Dullas. Feirgoers can also get an inside took at the life of singer and songwriter Taylor Swift. An exhibit called

"The Taylor Swift Experience" includes memorabilia such as cos-tumes, photos and instru-ments. The display will include the light blue Reem Acra gown that Swift wore last year during the Academy of Country Music awards.

GREAT WESTERN WIND PROJECT PUBLIC MEETING

Great Wastern Wind Energy, LLG will be constructing a wind energy project in Woodward and Ellis Counties and will hold a public meeting to provide information about the project. The meeting is open to anyone interested in tearning more about the project.

> LOCATION: THE PIONEER ROOM PIONEER HALL 1220 9th ST. WOODWARD, OKLAHOMA 73801

> > **DATE: JUNE 23, 2016**

TIME: 6:00 PM - 8:00 PM Messaga and the second

EDF Flenewable Energy c/o Gregory L. Probat 1600 Slout Street, Suite 1510, Donver, CO 80202 - (801) 631-2666

Why Haven't Senior Homeowners Been **Told These Facts?**

Better read this if you own a home in the U.S. and were born before 1954.

lt's a well-known fact that for many scolor citizens in the U.S. their home is their single higgest asset, often accounting for more than 50% of their total net worth.

Yer, according to new data tion the National Revorse Mortgage Lenders Association, senior homeowners in the U.S. are now sitting on more than 5 trillion dollars of unused borne equity. With people now living longer than ever before and home prices back up again, ignoring this hidden wealth" may prove to be short eighted.
All things considered, it's

not surprising that more than a million homeowners have already used a government-insured Home Equity Conversion Mortgage or "HECM" (more commonly known today as a teverse mortgage loan) to turn their home equity into extra cash for retirement. [Invever, today, there are still

millions of eligible homeowners who could benefit from this FHAlinared loan but may simply not be aware of this "retirement sceret."

homeowners think HECM loans sound "too good to be true." After all, you get the cash you need out of your home but you have no more monthly mortgage payments.

NO MONTHLY MORTGAGE PAYMENTS? EXTRA CASH?

It's a fact: no monthly mortgage payments are required with a reverse mortgage loan;2 the homeowners only have to pay for maintenance, property taxes, homeowner's insurance and, if required, their HOA fees.

required, their FDA feet.
Another fact many are not aware of is that HECM reverse merigages fina took hold when President Reagan signed the FHA Reverse Mortgage Bill into law 28 years ago in order to help senior citizens remain in their homes. Today, HECM loans are simply

an effective way for homeowners 62 and older to get the extra cash they need to enjoy their

Although today's HECM rationing totals a fraction to the improved to provide even greater financial protection for homerwiners, there are still many

homeowners, there are still many misconceptions.

For example, a lot of people mistakenly believe the home must be paid off in full in order to quality for a HECM reverse mortgage loan, which is not the case. In fact, one key benefit of a HECM is that it automatically HECM is that it automatically pars off your existing mortgage, which trees up cash flow, a ludge blessing for senious living on a fixed income. Unfortunately, many senior homeowners who could benefit from a HECM loan don't even bother to get more information because of runnus and the contract of the c

FACT: In 1989, President Reagan signed the FHA Reverse Mortgage bill into law.

That's a shame because HECM reverse mortgages are helping many senior homeowners live a better life.

In fact, a recent survey by American Advisors Group (AAG), the nation's number one HECM lender, found that over 90% of their elients are satisfied

ith their reverse mortgages. While these special loans are not for everyone, they can be a real lifesaver for senior homeowners like Betty Carter, who recently rook out a HECAI loan with AAG so that she could finally get the extra cash she needed to fix up

"With the help of AdG, I have been able to repair my bome's foundation that I bod been putting foundation that I had been parting off for several years, refinish the knoweed floors, paint the interior and will have the exterior painted within a few days. My bone is starting to look like my home again and it felt good, says Carter. The each form a HECM lean can

used for any worthwhile purpase. Many people use the money to save on interest charges by paying off credit ends or other high interest create cards or other high-interest loans. Other common uses include making home improvements, paying off medical bills or helping other family members. Some people need the extra cash for everyday expenses while others simply use it as a "safety net" for financial

emergencies.

If you're a homeowner age 62 or older, you owe it to yourself to learn none so that you can make an informed decision. Homeowners who are interested in learning more can request a free 2016 HECM Reverso Mortgage Information Kit and free Educational DVD by calling American Advisors Group tollfree at 1-866-589-3336.

At no rest or obligation, the professionals at AAG can help you find out if you qualify and also answer common ouestions

- 1. What is the government's role?

today.

The applied also office the charge of the ch

AFFIDAVIT OF PUBLICATION

State of Oklahoma)
)ss
County of Ellis)

Jerry L. Denson, of lawful age, being duly sworn and authorized, says that he is the owner of The Ellis County Capital, a weekly newspaper printed in the Town of Arnett, Ellis County, Oklahoma, a newspaper qualified to publish legal notices, advertisements and publications as provided in Section 106 of Title 25, Oklahoma Statutes 1971 as amended and complies with all other requirements of the laws of Oklahoma with reference to legal publications.

That said notice, a true copy of which is attached hereto, was published in the regular edition of said newspaper during the period and time of publication and not in a supplement, on the following dates.

Issue of June 9, 2016
Issue of
Issue of
Issue of
Subscribed and sworn to before me this
9 day of June, 2016
Quita Onton Notary Public
OFFICIAL SEAL My communication expires ANITA DENSON NOTARY PUBLIC OKLAHOMA WOODWARD COUNTY COMM. NO. 02016296 EXP. 10-10-2018

\$21.90

Publisher's Fee

NOTICE BY PUBLICATION

PUBLIC MEETING

Great Western Wind Energy, LLC, a Delaware limited liability company, intends to construct the Great Western wind energy project in Woodward and Ellis Counties, Oklahoma (the "Project"). Pursuant to title 17 O.S. §160.21(C), GWWE will hold a public meeting to discuss the Project and answer any questions. The location, date and time of the public meeting shall be as set forth below:

LOCATION:

THE PIONEER ROOM

PIONEER HALL

1220 9th ST. WOODWARD, OKLAHOMA 73801

DATE:

JUNE 23, 2016

TIME:

6:00PM-8:00PM

DATED this 3rd day of June, 2016.

EDF Renewable Energy c/o Gregory L. Probst 1600 Stout Street Suite 1510 Denver, CO 80202 (801) 631-2666 Publish in The Ellis County Capital, June 9, 2016.

How Foods Can Help Heal Common Ailments

(StatePoint) When you're not feeling well, conventional wisdom says you should reach for over-the-counter or prescription remedies. But many experts point out that foods have healing proporties that can be complementary in helping to treat common ailments and prevent illness.

in helping to treat common ailments and provent illness.

"The concept of using food as medicine isn't a new one: however, the evolution of society and science has moved us further from this concept," says Grand Master Nan Lu, OMD, one of the county's foremost teachers and practitioners of traditional Chinese medicine (TCM) and author of the new book "Digesting the Universe: A Revolutionary Framework for Healthy Metabolism Function." In my view, we are missing some of the most powerful and supportive steps we can take to remain well and provent disease and illness."

Lu says the teaching of TCM can help patients deal with the roof cause of their problems, rather than just climinate the symptoms. While complex, he is offering a few quick insights into the subject of food as medicine.

Nutritionists today base

medicine.
• Nutritionists today base their work on the physical and chemical properties of food alone, but this is just half the picture. "There are many immaterial things

contained within food as well," says Lu, who cites Qi, or vital energy, as a key aspect of food you can't see.

• The "right" foods won't necessarily protect your health by virtue of their properties alone. Good organ function is also necessary for your body to process and digest what you cat. However, foods can help restore balance to an ailing organ system.

• Listen to your body, not cultural beliefs about what is good or bad for you. Lu offers the example of a woman craving sugar or salt during her menstrual cycle. "Assuming she listens to the wisdom of her body and satisfies her craving, she"ll have some chocolale or cat some posterolale or cat some posterolale or cat. Lu says to also consider the phrase, "you are what you cat." Lu says to also consider the phrase, "you are what you think," and avoid a steady diet of negative emotions, which you hen must digest and process. Your thoughts impact your body and health, he

your body and health, he says.

• The next time your stomach is upset, consider creaching for something natural. Ginger can be eat-en or used topically to deal with stomach discomfort, reduce inflammation and even lower pain from ar-thritis.

More information about TCM and "Digesting the Universe" can be found at temworld.org.
While modern science

While modern science has offered us ground-breaking medications and treatments. traditional healing systems can help patients recognize the root cause of physical conditions for a healthier, more between the conditions for a healthier, more between the conditions for a healthier. balanced life.

OSDH

that you have traveled and the countries you have visited.

For more information about international travel safety, visit the CDC travelers' health website at www.cdc.gov/travel or the OSDH travelers' health web site a btre/fee site. web site at http://go.usa. gov/ch/Cam.

Public Meeting Great Western Wind Energy, LLC will be constructing a wind energy project in Woodward and Ellis Counties and will hold a public meeting to provide information about the project. The meeting is open to anyone interested in learning more about the project. LOCATION: THE PIONEER ROOM PIONEER HALL 1220 9th ST., WOODWARD, OKLAHOMA 73801 DATE: JUNE 23, 2016 TIME: 6:00 PM - 8:00 PM State British Asia Line 18

How To Create A Cash Stash For Unexpected Expenses

(StatePoint) Do you much you would realisti-have a solid plan in place—cally need if an emergency to support your financial goals that includes prepar-

for unexpected expenses is well before they happen. One strategy to consider is to open an emergency savings account where you can stash cash specifically for unexpected expenses or short-term savings goals. That way, you can avoid having to pay for these ex-penses with a credit card and incur interest.

Regardless of your financial circumstances, a rainy day fund offers peace of mind and, if you plan well, it won't derail your other long-term savings goals. To get one started, consider the following tips from Ally Financial Inc., which offers personal finance tips, tools and edu- funds: cation through its Wallet Wise financial literacy pro-

cifically for emergencies:

Many make the mistake of assuming that a standard savings account can also serve as a rainy day fund. However, dipping into savings when your roof leaks. may not be the best solu-

only purpose is for emergencies. Some banks, such as Ally Bank, will allow you to create "nicknames" for the accounts to reinforce their purpose.

· Specify amount to be

Set a goal for your fund that could cover most emer-gencies with a little extra to spare. (Some plumbing repairs can easily run close to \$1,000.) Determine how

Set up a recurring transing for emergency expens-es, too? fer or direct deposit to au-tomate savings. If money is The best time to plan tight, decide where you'll cut comers to make your plan work. For example, directing \$30 a paycheck to a rainy day fund in lieu of going out for dinner one night will help plan for the future.

· Fee free is the way to be:

Maximize your savings potential by finding a bank that won't charge you a monthly maintenance fee. or penalize you for dipping into your emergency fund. Better yet, an account that eams a competitive interest rate or one that is compounded daily will allow your emergency fund to grow faster on its own.

· Ensure you can access

Many Money Market Accounts come with checks or a debit card to quick access to funds, because emergencies usually don't happen at convenient times.

The benefits of such accounts allow you to pay a locksmith, plumber or roofer directly without needing to run to the bank. Why add an additional step Start an account that's to a stressful situation?

For additional tips on what you need to know to be smart with your money, visit allywalletwise.com.

Everyone is going to face a situation where an emergency strains their budget, You don't leave home in the rain without an umbrella, so don't take on life without the same safety net. A rainy day fund is a smart way to guard against financial stress.

		HADES HAR! SUPIN OK HA	i i	HATH GGTH			N1093 UTM 211				HAD 63 HARN
τo	Type	tering	talling	by	iai .	tri un	north_UTU	Ehr	lang_D4S	M_048	FAA_AAR
1	Vestus VIII7	1433232026	121323.933	-99.64367			4000349 818	2431.4	99 33 37.20 W	361 37 45 117 12	\$016-Y/TW-1374-OE
ž	Vestus VIII7	1484513 322	421341933	#63379 -99 63377	36,14678	412315 522	4000361.760 4000371.766	24333	99 35 23 35 W	36° 8° 47.01° ft	2016-Y/TVF-1375-OE
;	Vestas VII7 Vestas VII7	1486155 591 1497317.601	421651,609	20 67 378	36,14774	443717.539	1200623 131	24559	99°37 47.53°W	36'5'5231'6	2015-WTW-1377-05
:	Vestas V117	1453314 333	422067.731	90 62446	26.14412	443621786	4300631.247	21113	97 37 2307 W	39, 9, 24 31, 11	2016 7/117-1372-05
	Vestus VIII7	1450539.415	422140.002	-59,61993	36.14571	444227.259	4500620 584	2.537.2	59 37 11.51 W	35" 8" 55 35" 87	2016-WIW-1373-0E
	Webse VIII7	1491291 333	121601 539	-93 61C11	36.14308	144543-531	4300548.556	2501	E8 36.33 CC. IA	36'8'53.04'11	2016-WTW-1363-0E
•	Vestas V117	1492903 862	421979.568	-59 61035	28/17750	415039 815	430GA5A 827	2,4722	24 32.33 10.11	36' 6' 53 51' 11	2016-Y/TYY-13#1-OE
1	Water VIII7	1494314 685	421555.970	-93 60717	36.14728	415379 200	4220154.375	2,175.5	59 35 25 65 VY	36, 1, 10 13, 11	1015-WTW-1342-05
10	#477 A100 /#472 A100	11821-23 051	421507,733 421494,825	-99 60231 -99 55655	36,14723	445761.417	4000443.618 4000444.667	25121	97 15 124TW	35" \$" 43.57 # 36" \$" 50 0 F #	2016-WTW-1383-06 2016-WTW-1384-06
2	Wester VIOO	1497674 005	422603.432		36.15034	446551,999	4200787,463	25150	50, 32, 37.20, M	35'9'124'11	2015 Y/TY 1225 OE
í	Water VIO	1499304.235	422747.114	-99 50003	16.15077	446295 524	4000632,970	2,534.1	59: 35: 25:20 W	36 9 276 11	SOLE ALLA-1367 OE
14	Ver'ss VICO	1500401 509	422301.436	49 55558	3614969	417222 542	4000710722	2,534.1	54 32 9 CG, A1	35° 6" (A 90") !	1016-WTW-1387-0E
15	V= 1224 V100	1501573 973	122525.110	-93 SEOSO	36 15023	(177059)	1200774 641	2,439.2	57 24 50 16 W	36, 8, 53 ES, II 36, 8, 109, II	2016-WTW-1325-OE
7	Water VIO	1503359.553 1504239.683	422362.235 422231.438	-99.51356 -99.57203	36.14977 36.14980	415271 (75 415241-525	4300692,865	2,537.0	29 31.1931.14 29 31.3565.14	25, 8, 23 22, 15	304 MUN-1393-05
í	Watus V100 Watus V117	1450967,653	427077.595	4971911	36.16013	435292557	47053331140	24565	97-43-987'YI	36" F 39.1F H	2016-Y/TW-1301-06
,	Vestas VIII	1461951 665	427492.055	-99 71610	36.16207	435591,394	4302162-111	2,454.3	97 42 57.66° 1Y	36 7 43 45 11	2016 Y/TYI-1392-0E
0	Ve stas VIII7	1452725 283	427903.333	-90.71233	26,16343	435155724	4002317.304	24:45	55. 42.4718.IA	35 8 4255 11	2016-WTW-1393 OE
1	Wester VIII7	1464270.677	155,557,135	40 T-100	3616439	125.52 571	4002436.107	2.459 B	59-47 29 57 W 99-47 17.71 W	35, 4, 5521, 11	SOLEMIA-THE OF
2	Vertra VIII	1165563 (41)	1210E2 510	-9370455	36 16323	430256 556	17/20/20/21	2454.4	59 12 17,71° W	36' F 52.65' H	\$016-WTW-1395-0E
3	Wester VIII7 Wester VIII7	1466561651 1467208523	422272323	-99 70019 49 89531	36.16452 36.16452	437321 445 437373 453	4332434569 4302420 E70	2,453.8	99 41 4471 W	35 7 52 76 71	50-14114-131-05
į	Vestas VIII	1469272.121	127 87 2 026	-49 G9133	36.16339	477120,674	4302303.774	2419.4	59 41'2878'V	36" F 41.56" H	1015-WTW-1393-0E
,	Vestas VIII	1470230 521	427571.230	-99 GE 172	36.16269	435141249	4302212.435	2,457.1	56. 11, 12 EQ. IA	36' Y 15.70' N	2016-WTW-1353-05
ř	Vestas VIII7	1471127 218	427293.202	-50 GHX4	241EX0	432-01-034	4302132.816	2.475.2	59' 45' 57.55' W	35' 5' 43 20' H	2016-MJM-1103-0E
ł	Vestas VIII7	1472724.433	427241.042	40 67692	26.16131	439/35 526	4002120-269	2,454.9	99 49 44.11°W	36' Y 426T H	2016-WTW-1401-0E
•	Westas VIII7	1474001 854	177267,343	49 67 527	36.16203	439263710	4302131.918 4302143.817	2,455.5 2,459.0	23, 10, 1870, IA 23, 10, 3032, IA	30, & 4710, H	3015-WTW-1403-05 3016-WTW-1403-05
1	Vestus VIII Vestus VIII	1475205 572	427137,434 427137,434	49 67 119 49 665 15	26 16214 26 16142	(4017) 704	4352101.552	2,470,4	59 17 14.50 W	35 8 4254 11	2016-WTW-1401-DE
	Water VICO VA 10:	1478209 163	427161.346	-9-E-101	1216164	4400 45 530	4002112.679	2417.5	59" 37" 33.65" \Y	36' 9' 12.57' 11	\$016-YYTW-1405-0E
3	Wester VIOUTS for	1479237 216	427773.755	-92 £5756	16.16333	440257.475	4202227.262	2,457.2	97 37 27.23 N	36" ¥ 43.72" H	2016-Y/TYY-1435-OE
	Ne actor V100	1453417,723	47641140	49 £1343	35.16373	412131 335	4002729.531	2,472.4	50- 31-32'52.IA	36' 5' 49.07 11	2015-WTW-1407-OE
	Vestas V100	1465118944	427732.933	30765	36.16400	02:474	4202327.093	2,470.7	59: 33: 15:55' \V	32, 8, 13 18, M	5018-MIM-1103-0E
,	Vestas V100 Vestas V100	1487525 (6)	427610.733 427476.833	4963)77 496238	36 16315	412337.492	4002274 665	2,478.5	99 35 1 SE' W	35'9' (7.57 H	50-5111 WTV-1110-0E
,	Wester VICO	1455256 606	128017.950	-93.62466	26.16479	443317,543	4302407,408	2,459.8	99 37 28 77 19	70, 6, 73 50, 11	2015-WTW-1411-CE
•	Water VIII	1490130 252	427341.052	49 E2058	34 (646)	444175.793	4572337.357	2,471.3	59 37 18.45° W	36" F 52 EF N	5015-WTW-1413-0E
)	Maria A100	1491612 290		-99 61566	35.16473	4445253245	4302323.591	25302	59° 35° 31.01° W	36, 8, 30 32 M 36, 8, 30 32 M	3016-WTW-1413-0E
	Vertos V100 Vertos V100	1430545 595 1435073,175	427304933	-99 603 62 -99 603 50	36.16412 36.16311	415:43 44	4302207354	2,431.2	28- 32. IF 01. M	36' 5 47.21' !!	2015-7/TV-1415-0E
	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	14,532122)	427265.310	20 59366	2416376	416CE4 152	4302201 203	25%7	19" 35" EA 75" W	36 9 17.07 (1	2015 WTW-1416-OE
	Vestas V100	1437563 437		유성비	35.16377	415:64 £77	4302199.538	2,435.9	99-35'34 79'W	36' \$' 47.5T U	2015-W/W-1417-0E 2015-W/W-1418-0E
	Wester V100 Wester V100	1439214 515 15(0354 726	427284.1E0 427192.955	-93 54531 -93 54531	3616324 3616324	446345738 447355592	4302216 C23 4332192.450	2,532.0	\$9° 35° 23 54° W \$9° 35° 7,13° W	30, 8, 16, 54, 11	2016-WIW-1419-DE
	Water V100	1501776 041	127197.655	-99.53113	3616312	417726 450	4302197.703	2,500.4	\$9" 31" 52.23" \Y	36 7 47.21 11	2015 Y/TW-1123-DE
	Vertag V100	1503181 579	427155.264	-99 57E43	16.16310	413151 831	4302192.252	2,533.3	69: 31:37:11.fA	35' 7 47.11' 11	2015-WIW-1151-OE
	Vetas V100	1501273 663		49 57273	36.16333	443157.374	4202216.470	2536.5	59 34756*VI	36-3 56 27 H	20:5-Y/TVY-1422-0E 20:5-Y/TVY-1423-0E
	/F==== A100 /F==== A100	15054351 <i>070</i> 1506436 <i>4</i> 33	42812£147 423117.165	初起的 初知時	36.165e3 36.165e5	403143 201	4302131 533	2,521.8	63-31-22-ELA	36° 9 57.30° H	5015-MIM-1114-05
	Verta VICO	1507418 353	429105.657	-90 SE213	36.16527	419412 793	4302192 070	24764	80.33.17(C.IA	35' 5' 57,12' 11	2316-Y/TY-1425-DE
	Vertas VICO	1506531 197	123013.623	-9355532	36 16577	1181112	4002478 284	2,432.1	59 33 (266 W	36' 4'56 16' N	20-8141-WTW-9105
	Vestar V100	1511617.222		-99 54765	36.16332	450725 244	4702202755	2,428.7	59-37-5226°W	35' 9' 47.97' 11	2315 W/W-1127-0E
	Water ALCO	1512(00 900		-99 54447	36 16234	451678 576	4302391 651	2,4912	99° 32° 23.26° W	36' F 41.5F H	2016-WTW-1128-OE
	Vestas V100 Vestas V100	1513635 353 1515724 281	455312331 455433381	-99.53979 -93.53827	36.16135 36.16136	451441 926 451765 744	4302002.207 4301379.583	2,395.0 2,437.7	59" 37 10 57" W	36, 8 41'38 U	2015 WW 1433-05
	A5577 A1CO	1516545 533	421733,161	4953104	3615757	452233 869	(201555 E18	2,4123	69 51'\$1.75'W	36' 5 27.25 11	2015-WTW-1131-OE
	Vieta VICO	1517691 043	424316.928	-99 52643	26 15729	452£44 (CB	4301522.903	2,435.6	53-31/3532 W	36' 5' 16 75' 11	5015-Y/TVY-1132-0E
	Vertal VICO	1519480 283	421575 567	49 52 115	36.15677	453122.576	4331454 764	2,367.7	59: 31: 18:16: 1A	36, 2, 57 (3, 1) 36, 2, 57 (3, 1)	30-1411AUX-1402 30-1411AUX-1403
	Vestus V100	1520:52 795		-99 51710	36.15706	453137,700	4331492.579	23330	53.23.4710.M.	36, 8 33 18, 81	5013-WTW-1435-0E
	Andre A100 Andre A100	1522121 174 1523170 253	425053.231 427021.322	-99 51214 -99 50871	3616053 3616057	454) 45 598	4302211 276	2,379.5	59 37 31 37 14		2015-WTW-1436-05
	Vestas V100	1525170233	422462.770	92.17630	36.16769	455161 600	4302661 836	7,3/8.2	64 53.46 ET IV	36, 10, 3 52, 11	2016-WTW-1437-0E
	V+212 V100	1528210 577	421431-214	-92,49172	36.16762	455774,704	4532674,759	23:33	53, 53, 33 IL.M.	36' 10' 4.17' 11	SO ELLI-WIW BIGS
	V+#15 V100	1529353 674	426532.557	493,43516	36.18828	455275 890 456225 970	4002723 000	2.423.4	59 23 10.17 W	36' 10' 5 81' 11	50124UAN-11170E
	Vertas V100	1531CC0 F24		9 17712	35.16534 36.16534	452225 (24	472546 412	2,427.9	97 25 42 15 17	36" \$" 55.94" \$1	2015-WTW-1441-0E
	Vestus V100 Vestus V100	1532298 645 1533387 807		-99 17415	35.16697	673 X 29	100571290	24.67	59 20 26 97 W	35, 10, 1'03, N	2015-Y/T/Y-1142-OE
	Vestas VICO	1535172.063	427345 543	49,44313	76.1E772	457199 229	4302152.252	2,370.5	29 26 5 26 W	36' 10'377 11	2015-WTW-1443-05
	Vestas VICO	1538219 (53	422452.798	99.46413	26.16537	458326.015	4302590,154	2,371.9	27 27 52 11'W	36, 10, 2 59, 11	30 134 144TVF - 1105
	As 1072 A100	1136394663	432CE3 E49	9916	26.17634	416254 302	4203672.534	2,533.6 2,458.7	99 35 37.26 W	36, 10, 37 KJ, H	2016 WTW-1445 OE 2016 WTW-1445-OE
	Vestas V100			-90 59090 -99 59451	36 17631 36 17631	41865) 516 417436 463	4)(0512-84) 4)(0519-94)	2,453.3	23 32 151 W	30, 10, 30, 60, 14	20-11-1-WTW-11-02
	/# 474 A100 /# 474 A100			-53 61039 -53 51039	36.18068	445661 073	4534516 684	24-11	54 38 39.55 W	35' 11' 1.97' N	20167/174-1448-05
	Vertus V100	1431112 (01	434571753	99 60614	3618334	445469 651	1334121-206	2,5347	59 33 23 17 17	36' 10' 54 55" N	50-E141-V/T/V-2165
	Vestas VICO	1495667.523	437212.352	· 59 (624	36.19037	(1533) 828	43/25232 (53	2,457.4	59: 35: E.19: VI	38, 11, 52,31, 11	2016 WTW-1453-0E
	Westa \$100	1496624.118	417355.419 417363.269	49 59 111 49 59 111	56.19060 36.19068	416165 605 416666 941	4305277,131 4305283,553	2,4553	35.37.76.M 38.32.37.11.M	36' 11 27.11' N	501E-MIM-1171-0E
	Vestas VIII7			49 54317	26.19106	447227.301	4305300.426	2.1330	59 25 21.02 W	35' 11 27.50' N	2015-Y/TY-1453-0E
	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	1500775 373	437457959	40 SES 15	36.19124	417283 413	4305318 637	2,450.1	\$9-35"5.53"W	28,11,55,42,8	2016-HANA1121-OE
	lt star VII7	1501936 677	437370642	29 58121		417741 502	£X6797 F33	2,4503	58-31.2522.IA	36' 11 27 65' 11	2015WTW-1455-0E
	Ve±s ¥117			49.57573 CD 67111	36.19350 36.19377	448238 247 448652 094	4306597 844 4306591 523	2,434.1	33, 31, 16 15, IA 28, 31,35 21, IA	36 11 37 54 11	2616-Y/TYY 1156-DE 2616-WTYY-1157-DE
	Vestas VIII Vestas VIII	1504921.753	432333.664 432245.433	99 57 11 C	26.19377 26.19366	415)31.143	43/2577/255	2455.9	89.31.114.A1	35' 11' 37.19" H	2016-Y/TVY-1151-OE
	Vestas VIII7	1507123656	431510,176	95%	36.19444	415411.743	4325562 227	2,121.0	89-33 42 Et. IA	36, 11, 12,00, 15	EDIE WAYNISHOE
	Verses V100	1499306 914	411715.924			416154730 417194800	4307527.277 4307566.270	2,419.4	59: 35: 10 EE: 14 59: 35: 10 EE: 14	36,15,60 01,14	304541441W41W
		1500543 926		93 58636	5621150						